728x90 AdSpace

Theo dõi và chia sẻ các bài viết mới
Tin nhanh

Mười nguyên tắc cho việc dạy và học toán nhằm giúp học sinh vượt qua khó khăn

Trong chuỗi bài viết nói về khó khăn của học sinh khi học toán, hôm nay mình bàn cùng đến những nguyên tắc cho việc dạy và học nhằm giúp học sinh vượt qua khó khăn trong việc học toán. Mong rằng sẽ đem lại đôi chút có ích cho bạn đọc, nếu thích cho vài G+ nhé (Nút phía trên bên phải).
Trước hết, bạn nên biết: Nguyên nhân gây nên những khó khăn cho HS khi học toán
Dựa trên những nghiên cứu về việc dạy và học theo quan điểm Lý thuyết kiến tạo, có thể đúc kết một vài nguyên tắc chung cho việc dạy và học như sau:
1. Học sinh học bằng cách kiến tạo tri thức
Nhiều nghiên cứu cả trong giáo dục và tâm lý đã đưa đến giả thuyết rằng học sinh học bằng cách xây dựng kiến thức cho mình mà không phải tiếp thu thông tin một cách thụ động. Bất kể là người thầy giáo hay một cuốn sách nào đó cung cấp cho các em một lượng thông tin rõ ràng, rành mạch như thế nào đi nữa thì học sinh sẽ chỉ hiểu những tài liệu học tập đó sau khi các em đã kiến tạo cho riêng mình ý nghĩa về những gì đang học.

nguyen tac day hoc giup hoc sinh vuot qua kho khan

Ở Hội nghị quốc tế lần thứ 60 về giáo dục toán tổ chức tại Budapest năm 1988, Steen đã đề xuất “... Giáo viên thường hành động như thể tâm trí của mỗi học sinh là một tấm bảng trắng hay một cái đĩa mềm còn trống mà kết quả trên đó là giáo viên có thể ghi bất cứ thông tin gì họ muốn. Nghiên cứu về khoa học nhận thức nhìn nhận theo một cách khác rằng mỗi học sinh mang đến trường học một tập hợp rất phong phú về những kinh nghiệm toán học đã có, những kinh nghiệm này tạo ra một cấu trúc trí tuệ riêng mà trong đó mỗi học sinh sẽ tạo ra những mô hình mới bắt nguồn từ những kinh nghiệm mới. Việc học diễn ra không phải trong hoạt động của sự nhớ lại mà trong sự phát triển dần dần của cấu trúc trí tuệ duy nhất trong mỗi cá nhân. Nói cách khác, học sinh học bằng cách điều chỉnh, sửa đổi “chương trình” của tâm trí mình chứ không phải bằng cách lưu trữ dữ liệu mới vào “bộ nhớ” của tâm trí mình.”
Như vậy, theo quan điểm của Lý thuyết kiến tạo, mỗi người giáo viên cần phải nhận thức được rằng học sinh đến lớp không phải như một chiếc “bảng trắng”, một cái “đĩa trống” hay một cái “hộp rỗng” đang đợi để được làm đầy, thay vào đó, học sinh đến lớp để được tiếp cận những hoạt động học cùng với tri thức mang ý nghĩa đã có từ trước. Khi học một vài điều mới, học sinh sẽ hiểu ý nghĩa thông tin mới dựa trên kiến thức có trước của mình, kiến tạo cách hiểu riêng cho mình bằng cách liên kết thông tin mới với những gì các em đã tin. Học sinh có xu hướng chấp nhận những tư tưởng mới (tri thức mới) chỉ khi những tri thức cũ của các em không còn hoạt động hoặc tỏ ra là không còn hiệu quả cho những mục đích mà các em cho là quan trọng.
Các nhà giáo dục toán theo quan điểm kiến tạo khẳng định rằng bằng cách xây dựng trên những kiến thức đã kiến tạo được, học sinh có thể nắm bắt tốt hơn các khái niệm và có thể đi từ nhận biết sự vật sang hiểu nó. Kiến thức được kiến tạo khuyến khích tư duy phê phán, nó cho phép học sinh tích hợp được khái niệm theo nhiều cách khác nhau. Khi đó, học sinh có thể trình bày khái niệm, kiểm chứng, bảo vệ và phê phán về khái niệm được xây dựng.
2. Học sinh học bằng hành động gắn liền trong các hoạt động học
Học sinh sẽ học tốt hơn nếu các em cảm thấy bận rộn và được thúc đẩy để nỗ lực với việc học của bản thân mình. Theo cách đó thì học sinh dường như sẽ học tốt hơn nếu các em được làm việc hợp tác trong các nhóm nhỏ để giải quyết các vấn đề và có cơ hội được tranh luận về sự tiếp cận vấn đề giữa các tư tưởng và phương thức đối lập.
Những hoạt động theo nhóm nhỏ có thể liên quan đến các nhóm gồm 3 hoặc 4 học sinh cùng nhau làm việc để giải quyết các vấn đề. Tổ chức những hoạt động theo nhóm nhằm tạo cơ hội cho học sinh trình bày những ý kiến của mình bằng cả nói và viết, giúp các em trở nên quan tâm chú ý hơn trong việc học của mình. Thông qua thảo luận, tranh luận trong tập thể, ý kiến của mỗi cá nhân được bộc lộ, khẳng định hay bác bỏ, qua đó trình độ của mỗi học sinh sẽ được nâng lên.
Các nghiên cứu đã chỉ ra rằng học hợp tác theo nhóm nhỏ góp phần nâng cao kết quả học tập của mỗi học sinh. Học sinh nhận ra được sức mạnh đoàn kết trong giải quyết các vấn đề. Ý tưởng là động viên học sinh “cùng bơi hoặc cùng chìm” với nhau hơn là sản xuất ra những “kẻ thắng người thua” như trong môi trường học tập có tính ganh đua một cách truyền thống.
Mục đích của học hợp tác theo nhóm nhỏ:
  • Thúc đẩy sự giao tiếp và tăng thêm mối liên hệ giữa các học sinh với nhau.
  • Củng cố việc học bằng cách trình bày nó cho những người khác biết.
  • Thu hút các thỏa thuận khôn ngoan để giải quyết các vấn đề [1.].
Theo quan điểm này, những bài học được xây dựng dựa trên các hoạt động và có dùng các nhóm nhỏ dường như có thể giúp học sinh vượt qua được các nhầm lẫn khái niệm và thúc đẩy các em học các khái niệm hơn.
3. Học sinh “học để làm” tốt chỉ những gì các em thực hành
Thực hành được xem là các hoạt động thao tác bằng tay, những hoạt động có dùng các nhóm nhỏ hợp tác hay làm việc trên máy vi tính. Các nghiên cứu chỉ ra rằng học sinh cũng học tốt hơn nếu các em có kinh nghiệm vận dụng các ý tưởng vào trong những tình huống mới. Nếu các em chỉ thực hành để tìm ra các câu trả lời cho những bài toán rõ ràng và quen thuộc thì điều đó hoàn toàn các em có thể học được. Tuy vậy, học sinh không thể học để có tư duy phê phán, phân tích thông tin, trao đổi các ý tưởng, xây dựng các lập luận, giải quyết các tình huống mới trừ phi các em được cho phép và bị thôi thúc làm những việc đó nhiều lần trong những điều kiện khác nhau.
Chỉ lặp lại và ôn tập các công việc sẽ không chắc rằng có thể cải tiến được những kỹ năng hay làm cho việc hiểu vấn đề được sâu hơn.
4. Giáo viên không nên đánh giá quá thấp về những khó khăn mà học sinh có thể gặp phải trong quá trình tìm hiểu các khái niệm cơ bản của toán học
Trong việc dạy học toán cũng như việc dạy học các môn khoa học khác ở trường phổ thông, điều quan trọng bậc nhất là hình thành một cách vững chắc cho học sinh một hệ thống khái niệm. Đó là cơ sở cho toàn bộ kiến thức toán học của học sinh, là tiền đề quan trọng để xây dựng cho các em khả năng vận dụng các kiến thức đã học. Quá trình hình thành các khái niệm có tác dụng lớn đến việc phát triển trí tuệ, đồng thời cũng góp phần giáo dục thế giới quan cho học sinh (qua việc nhận thức đúng đắn quá trình phát sinh, phát triển của các khái niệm toán học) [2.].
Như chúng ta đã biết, toán học là kết quả của sự trừu tượng hóa diễn ra trên những bình diện khác nhau. Có những khái niệm toán học là kết quả của sự trừu tượng hóa những đối tượng vật chất cụ thể, nhưng cũng có nhiều khái niệm nảy sinh do sự trừu tượng hóa những cái trừu tượng đã đạt được trước đó. Điều này gây ra nhiều khó khăn cho học sinh trong việc hình dung và hiểu các khái niệm một cách trực giác.
5. Giáo viên nên thường xuyên đề cao việc tìm hiểu xem học sinh của mình hiểu các khái niệm cơ bản tốt như thế nào?
Một vài nghiên cứu cho thấy mặc dù học sinh có thể trả lời chính xác một số câu hỏi trong các bài kiểm tra, các bài trắc nghiệm, có thể thiết lập được các phép toán một cách chính xác nhưng các em vẫn còn nhầm lẫn về các ý tưởng và khái niệm cơ bản cũng như các em có thể hiểu nhưng không có khả năng chuyển sự hiểu biết đó của mình vào những bài toán mang nhiều nội dung thực tế hơn. Do vậy, để có thể nắm bắt được chính xác việc hiểu của học sinh về những kiến thức đã học giáo viên cần phải tiến hành đánh giá một cách toàn diện và thường xuyên hơn.
6. Việc học của học sinh sẽ được cải tiến nếu các em nhận thức được và đương đầu với những lỗi khái niệm của mình
Các nhà kiến tạo cho rằng học sinh học toán tốt nhất khi các em được đặt trong một môi trường xã hội tích cực mà ở đó các em có khả năng kiến tạo cách hiểu biết về toán theo cách riêng của mình. Với ý nghĩa này, thách thức đặt ra trong việc dạy học toán là tạo ra được những hoạt động thực nghiệm thu hút được học sinh tham gia và động viên, khuyến khích các em giải thích, đánh giá, trao đổi và áp dụng các mô hình toán học cần thiết nhằm làm cho những kinh nghiệm này có ý nghĩa.
Có lẽ học sinh sẽ học tốt hơn khi các hoạt động được xây dựng nhằm giúp các em đánh giá, xác minh sự khác biệt giữa những niềm tin của mỗi cá nhân đối với tri thức và những kết quả thực nghiệm có thật. Nếu như ban đầu học sinh được yêu cầu hãy phỏng đoán hoặc dự báo về một nội dung hay vấn đề nào đó thì các em có thể sẽ rất quan tâm đến những kết quả thực nghiệm. Khi bằng chứng thực nghiệm đã rõ ràng là mâu thuẫn với những dự đoán của các em, chúng ta nên giúp đỡ các em xác minh sự khác biệt này.
Quả thật, chính trong quá trình học sinh bị thôi thúc thu thập những kết quả thực nghiệm và so sánh những dự đoán của mình với các kết quả đó, các em sẽ có khả năng xác nhận bằng chứng về những lỗi khái niệm của mình.
7. Máy tính nên được dùng để giúp học sinh trực quan và khám phá toán học, không nên chỉ dừng lại ở việc cung cấp các thuật toán để dự đoán kết quả
Dạy học với sự hỗ trợ của máy tính dường như giúp học sinh nắm vững hơn các khái niệm toán học, bằng cách cung cấp những cách khác nhau để biểu diễn cùng một đối tượng hay cho phép học sinh thao tác các khía cạnh khác nhau của một biểu diễn cụ thể khi khám phá đối tượng.
Các phần mềm dạy học có thể giúp học sinh hiểu những khái niệm trừu tượng, đặc biệt là những khả năng độc đáo của các phần mềm động trong dạy học toán, cho phép cụ thể hóa một đối tượng toán học trừu tượng, với việc trực tiếp thao tác trên các đối tượng này, học sinh có thể thu được nhiều thông tin phản hồi từ đối tượng. Từ việc tác động và làm thay đổi các đối tượng đó, học sinh có thể khám phá nhiều hơn những điều mới.
Do vậy, để điều trị những khó khăn cho học sinh trong học toán, chắc chắn không thể thiếu sự hỗ trợ của máy tính và các phần mềm động. Khai thác điểm mạnh của các phần mềm động, xây dựng các môi trường toán tích cực trên máy tính là khâu đặc biệt quan trọng trong tiến trình giúp học sinh vượt qua những khó khăn và góp phần cải tiến khả năng tư duy toán cho các em.
8. Học sinh học tốt hơn nếu các em nhận được sự hòa hợp và sự phản hồi hữu ích đối với những thể hiện của mình
Việc học sẽ được cải thiện nếu học sinh có cơ hội được trình bày các ý tưởng của mình và thu được thông tin phản hồi về những ý tưởng đó. Sự phản hồi nên được phân tích và đưa ra ở thời điểm học sinh thực sự quan tâm đến nó. Cần có thời gian cho các em phân tích thông tin phản hồi đã nhận được, điều chỉnh và cố gắng làm lại lần nữa nếu chưa phù hợp.
Với khẳng định như vậy thì việc đánh giá khả năng toán học của học sinh có lẽ được dùng với mục đích nhằm cung cấp những phản hồi đến học sinh khi giải quyết vấn đề toán trong suốt quá trình học mà không nên chỉ nhằm đưa ra một nhận định cuối cùng khi kết thúc học kỳ hay năm học. Hơn nữa, việc đánh giá nên nắm bắt được khả năng đưa ra một lập luận, khả năng trao đổi các lời giải và vận dụng kiến thức của học sinh. Sự đa dạng của các phương pháp đánh giá nên được dùng để nắm bắt phạm vi bao quát nhất về việc học của học sinh.
Giáo viên nên thành thạo trong việc phát triển và lựa chọn các phương pháp đánh giá thích hợp, liên kết được với việc dạy và nên có được những kỹ năng trong việc trao đổi với học sinh các kết quả đánh giá. Những kỹ thuật đánh giá được thiết kế tốt sẽ giúp giáo viên hiểu đúng hơn và cải tiến được việc học của học sinh mình.
9. Học sinh học hiệu quả những điều các em biết sẽ được đánh giá
Mọi học sinh đều biết rằng các em sẽ được đánh giá khi đang còn trên ghế nhà trường. Trong bất kỳ một lớp học toán nào, một số học sinh luôn muốn hỏi “Liệu kiến thức này có xuất hiện trong đề kiểm tra không?”.
Như vậy, một lý do khác để đánh giá vượt xa hơn những gì được dùng của các bài kiểm tra truyền thống là học sinh sẽ chỉ tự mình vận dụng, thích ứng với những kỹ năng và các hoạt động mà các em biết sẽ được đánh giá. Nếu học sinh biết các em sẽ được đánh giá dựa vào khả năng nhận xét, phê phán, khả năng trao đổi thông tin của mình hay khả năng làm việc hợp tác trong nhóm với một chủ đề, khi đó các em sẽ sẵn sàng hơn, nhiệt tình đầu tư cho việc cải tiến những kỹ năng được yêu cầu bởi các hoạt động này.
10. Việc sử dụng các phương pháp dạy học được đề xuất không chắc chắn rằng tất cả học sinh sẽ học tài liệu
Không có phương pháp nào là hoàn hảo và sẽ có thể tác động thích hợp đối với tất cả học sinh. Một vài nghiên cứu giáo dục toán đã chỉ ra rằng những nhầm lẫn khái niệm của học sinh thường là nhanh chóng thích nghi và khá bền vững, kiên cố, các em rất chậm để thay đổi được, ngay cả khi học sinh đó đã được đối mặt với một sự thật rõ ràng rằng niềm tin của mình là không đúng. Điều này mới chỉ là một phần của vấn đề. Mặt khác, chúng ta không thể biết chắc là các em đã đủ tập trung, chú ý để nỗ lực với việc học các ý tưởng mới hay chưa.
Như vậy, cần xác định một cách rõ ràng rằng: trong quá trình khắc phục khó khăn cho học sinh, cần phải xây dựng được một chiến lược lâu dài, bền bỉ; trong quá trình vận dụng, đòi hỏi người giáo viên phải biết “tùy cơ ứng biến”, linh hoạt và mềm dẻo trong từng trường hợp, từng điều kiện cụ thể. Làm được những việc đó mới hy vọng có thể nâng cao được hiệu quả của các biện pháp đã đề xuất.

Tài liệu tham khảo:
1. Trần Vui (2006), Nghiên cứu giáo dục và đánh giá khả năng toán, Bài giảng cho  học viên Cao học, ĐHSP - ĐH Huế.
2. Nguyễn Bá Kim (2004), Phương pháp dạy học môn toán, NXB ĐHSP, Hà Nội.

Ai thích nghiên cứu giáo dục toán thì đọc thêm: 
Mười nguyên tắc cho việc dạy và học toán nhằm giúp học sinh vượt qua khó khăn Reviewed by Tân Phúc on 19:58:00 Rating: 5 Trong chuỗi bài viết nói về khó khăn của học sinh khi học toán, hôm nay mình bàn cùng đến những nguyên tắc cho việc dạy và học nhằm giúp họ...

Không có nhận xét nào:

Xin vui lòng để lại vài dòng nhận xét hoặc đánh giá có nội dung. Sự quan tâm, chia sẻ của quý độc giả sẽ tạo ra những trải nghiệm tuyệt vời cho cộng đồng bạn đọc cả nước.